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ABSTRACT 

It is essential to build, maintain, and use our transportation systems in a manner that 

meets our current needs while addressing the social and economic needs of future 

generations. In today’s world, transportation congestion causes serious negative 

impacts to our societies. To this end, researchers have been utilizing various statistical 

methods to better study the flow of traffic into the road networks. However, these 

valuable studies cannot realize their true potential without solid in-depth 

understanding of the connectivity between the various traffic intersections. This paper 

bridges the gap between the engineering and social science domains. To this end, the 

authors propose a dynamic social network analysis framework to study the centrality of 

the existing road networks. This approach utilizes the field of network analysis where: 

(1) visualization and modeling techniques allow capturing the relationships, 

interactions, and attributes of and between network constituents, and (2) mathematical 

measurements facilitate analyzing quantitative relationships within the network. 

Connectivity and the importance of each intersection within the network will be 

understood using this method.  The authors conducted social network analysis (SNA) 

using a two studies in Louisiana.  Results indicate intersection SNA modeling aligns 

with current congestion studies and transportation planning decisions. 
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INTRODUCTION 

Traffic congestion is a major problem in the United States.  In ASCE’s 2013 Roads 

Report Card, about 42% of major urban highways were congested (2).  This congestion may 

be caused by a 39% increase in VMT with only a 4% increase in new construction road miles 

between 1990 and 2009 (2).  Traffic congestion causes the following issues:  reduced in 

travel speeds, restricted roadway capacity, unstable traffic conditions, increased fuel costs 

and length of travel times (2, 9, 15).   

When delays occur, it is an indicator that a particular transportation network does not 

have a suitable design to meet the social and economic needs of current and future users. 

Increases in fuel consumption, engine emissions, vehicle wear and tear, and wasted time are 

caused by traffic congestion (24, 3, 20). Traffic jams have also detrimental effects on the 

physical and psychological well-being of commuters (11, 20).  In addition, high levels of 

speed reduction and travel time variability are dangerous to both the mental and physical 

safety of commuters.  As a result, there are healthcare costs associated with bottlenecks and 

blockages.  A study published by the National Institutes of Health (NIH) predicts the cost 

related to health impacts caused by congestion to be $13 billion by 2020 (11).  Another 

negative cost effect of grid locked traffic is reduced economic productivity by limiting 

mobility of roadway users and commuters (24).  In total, all negative impacts caused by 

traffic congestion, cost the economy $101 billion a year (2). 

Transportation system users experience many of these effects on a regular basis.  For 

many people, traffic congestion is a daily fact of life.  A commute that takes 30 minutes in 

normal conditions may take 45 minutes to more than 60 minutes in bottle necked traffic 

conditions.  Many roadway users are forced to deal with extended and variable commute 
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times in order to travel to and from work, medical appointments, social events, etc.  They 

deal with the negative effects of travel time delays without giving much thought to what 

congestion really is. They simply take familiar routes to arrive at their planned destinations.  

For example, when commuters can accurately predict the travel time of a desired route, it is 

likely that they will travel on that route (15). Transportation system users are hesitant to use 

untested travel networks to reach their planned destination because the travel time prediction 

of a new network can be less reliable than the time prediction of their regular travel network.  

They prefer to plan for extended and variable travel times than to plot different commute 

routes. 

 

OBJECTIVE 

The objective of this research is to help bridge the gap between engineering and 

social science disciplines.  Attention is given to determine the applicability of social science 

to transportation studies.  The main goal of this proposal is to gather in depth analytic 

information which should enable decision makers to effectively and efficiently prioritize and 

optimize future infrastructure transportation projects. To achieve this goal, the main objective 

of this project is to study the centrality of the existing road networks using social network 

analysis.  As transportation networks are groups of related intersections and roadways, this 

SNA model can provide guidance for improving these relationships. 

 

SCOPE 

This work evaluated existing congestion identification and mitigation models.  To 

mitigate traffic congestion several methods of evaluations have been developed to determine 

key traffic attributes and aid decision makers in transportation planning efforts.  Origin-
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destination (O-D) demand, signal timing and geometry of intersections or roadways are some 

variables that can indicate that congestion will occur.  These attributes provide guidance 

when designing new networks and redesigning in-place, congested transportation networks. 

O-D demand is a critical component of the trip distribution calculation.  During a 

typical trip distribution calculation, O-D demand is determined by assigning origin and 

destination pairs for transportation network user trips.  

 The accuracy of O-D calculations is affected by two uncertainty causing variables: 

route selection and traffic volume variability (8).  To accurately calculate origin-destination 

demands, more detailed information is required.  It is desirable to more to have more reliable 

capacity information to either know the exact capacity of the current network and to reliably 

forecast the capacity of the future network. 

A variety of O-D demand literature was reviewed for this work, however, no matter 

the focus of the literature, each study focused on at least one of the two main categories in 

the origin-destination demand calculation:  route variability and/or traffic volume accuracy.  

The route variability category will focus on research and literature that discusses route 

selection and use factors.  The traffic volume accuracy category will focus on research and 

literature that discusses traffic volume determination, accuracy and attempted improvements.  

The literature will be reviewed, discussing the research and findings, with a summary 

provided in a table to compare the findings of each set of research findings.   

One problem or concern in determining origin-destination demand is the actual route 

a transportation network user takes between their origin and destination.  O-D values give an 

indication of the demand or importance of selected O-D pairs.  Traditionally, telephone 

surveys, census data and roadside surveys have been used in an attempt to determine the 
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actual route transportation network users prefer and actually use (21).  A problem with these 

methods is that as soon as the data has been collected, it is old and possibly obsolete.  

Recently, cell phone tracking has been used to estimate traffic volumes on selected links or 

roadways at specific times.  This tracking method provides almost real time transportation 

network user tracking.  This phone tracking method can also be used to determine which O-D 

pairs contribute to traffic volume on a selected link.  Researchers can use this method to 

analyze how the O-D demand and route selection change when different travel/traffic and 

environmental events occur.  One study indicated that close to 60% of traffic on a congested 

highway route, during rush hour, was local in nature (21).  This indicates that the majority of 

the roadway users are “commuters” with the remaining 40% of traffic being intercity, if not, 

interstate travelers (21).  Cell phone tracking has enabled the accurate tracking of route 

selection and traffic volume of selected routes.  The increased, and more detailed, route 

information afforded by tracking cell phones could be used to by transportation planners to 

make more exact transportation network improvements and changes.   

The length of time it takes to travel between an O-D pair will impact route selection.  

Routes with the shortest perceived travel time will be used to connect O-D pairs.  Perceived 

route length is based on several route characteristics:  physical length of each route, presence 

of congestion and the amount of actual traffic compared to the route’s capacity (19).   A 

route’s perceived travel time is equal to its actual travel time when no congestion is present.  

Once determined, perceived travel time is a major factor in determining system flexibility.  

Factored with the number of different routes, as well as, the number of independent links 

available on these different routes, perceived travel time impacts the flexibility of a model 

(19).  Increasing system flexibility, improves travel time reliability (19).  While travel time 
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reliability is increased, a network with a high level of flexibility may complicate the 

determination of route usage and congestion location.    

Route uncertainty is one of two variables that directly contribute to uncertainty of the 

O-D calculation.  Route uncertainty is caused by multiple solutions because of incomplete 

nature of the O-D calculation and by errors in traffic counts (8).  To control this uncertainty, 

a generalized demand scale model was developed.  This model attempts to account for as 

much route variability as possible through observed link flow constraints, capacity 

constraints of unused links and path set (8).  Research found that this demand model was 

accurate and within the required confidence intervals when applied an actual transportation 

network (8).  The generalized demand model reviewed can be used to more accurately 

identify critical routes and links within a studied network. 

Network capacity reliability is critical to transportation network design and use 

because it can be used by decision makers when managing infrastructure, improving 

roadways against disaster and providing a flow control implementation indicator (7).  

Capacity reliability is the probability that a network, at a required service level, can meet the 

traffic volume demand requirements (7).  Chen et al., defined 7 measures which use 

traditional links and nodes in calculating network reliability:  connectivity reliability, travel 

time reliability, within budget time reliability, travel demand reduction reliability, travel 

demand satisfaction reliability, encountered reliability and capacity reliability (7).  Because 

these measures focus on individual links or nodes within specific modes of transportation, 

they do not give a good measure of the entire network capacity and reliability. 

To determine full network capacity reliability, a reserve capacity model and network 

capacity model based on the ultimate capacity and practical utility concepts were developed 
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(7).  These capacity models are defined below: 

 Reserve capacity is the largest full network O-D matrix multiplier that be applied 

without exceeding individual link capacities or required levels of service; 

 Ultimate capacity is the maximum volume a system can process without exceeding 

individual link or zone capacities; 

 Practical capacity is the difference between the O-D that a system can handle and the 

actual O-D demand that is currently occurring (7). 

Application of the ultimate and practical capacity models enabled a non-uniform O-D 

growth, allowing for zonal activity allocation analysis, in conjunction with the physical 

capacity of zonal land use (7).  These models expand and improve on existing O-D models 

because non-uniform O-D growth more accurately reflects actual growth and use patterns.  

As such, network capacity reliability is improved. 

Another study found that the amount of budget spent on a network influences 

capacity reliability.  Specifically, network capacity reliability is incrementally increased to a 

maximum as more budget is spent on a network to enhance volume and capacity (23).  The 

incremental jumps could occur when smaller links are able to significantly expand capacities 

through relatively simple changes like lane additions.  Once right of way is used up, capacity 

increases can only occur through more limited options like improved ITS or by slightly 

modifying network or road layout.  As such, when major budget expenditures have been used 

up on a link within a network, spending more budget, will not improve capacity reliability. 

A third study focused on developing a new capacity model that could be used to 

estimate the throughput of a network so that higher level flow control and demand 

management can be performed (22).  This model can be used to forecast how much 
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additional capacity a network could handle using the existing infrastructure, develop public 

policies to ensure the network is not overloaded and prepare for infrastructure additions or 

modifications to accommodate additional traffic flows (22).  Capacity modeling can be a 

strong transportation planning tool.  This is because it can be used to model future flows to 

develop policies that limit flow growth to remain within the capacity and plan for 

infrastructure improvements and additions.   

Traffic volume accuracy is key to O-D estimation.  Accurate traffic volume 

information enables a better understanding of the route selection between an O-D pair.  It has 

been determined that ITS programs that install detectors at various locations can accurately 

count and then predict traffic volume and flows (10).  Research has shown a strong 

correlation between predicted traffic flows determined by formulas derived from analyzing 

actual traffic flows and actual traffic flows observed by counting sensors (10).  Though not as 

high, there a correlation between predicted and actual travel time (10).  The ability to 

reasonably predict traffic volumes and travel times can be used by transportation planning 

agencies to modify and maintain their infrastructure.  Accurate travel times and traffic 

volumes can also be used to give transportation network users real time information upon 

which they may react to use the network links that provide for the fastest travel time.  A brief 

summary and comparison of relevant O-D demand literature is detailed below in Table 1.  

Blank boxes indicate a certain attribute was not studied in the literature, whereas, boxes filled 

with an “x” indicate that the selected literature studied that attribute. 
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Table 1. Summary & Comparison of O-D Demand Literature Review Findings 

 

 

Two factors that impact the travel time and traffic volume, key in determining O-D 

demand are signal timing and geometry.  Intersection and roadway geometry can impact the 

decision making of drivers and safety of the roadway.  Signal timing can significantly 

influence the O-D demand through negative travels times and increased congestion.   

Intersection and roadway geometry consists of the general layout of the roadway.  

Grade changes, both vertically and horizontally, are geometric considerations that can 

negatively impact the roadway users.  Skewness and site distances impact intersections.  

Layout of minor cross streets and shopping center entrances also impact the overall geometry 

of the adjacent roadways and intersection.  Lane configuration is also a geometric factor that 

influences roadway and intersection design.  Further, it was found that typical four way 

intersections with turning lanes experience more congestions because they are negatively 

impacted by skewness and downgrade (18).  This finding supports grid network roadway 

systems and 90 degree intersection crossings.  The geometry and layout of shopping center 

access points and minor cross streets also impacts traffic flow.  It has been determined when 

planners design roadways with no left turn or congested access out of shopping centers or 

with poorly timed signals at minor cross streets, roadway users may opt to take right turns, 

followed by u-turns in an effort to minimize their wait time and travel time (12).  Liu et al. 
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also found turning right, then making a u-turn to avoid delayed left turns on congested 

roadways is a common practice used by drivers (12).  Drivers estimate that they will be able 

to travel the extra distance required by these movements faster than the time they will be 

delayed prior to making the intended left turn movement.  Often, reduced travel time does 

not result from the right turn, left turn movement.  In fact, it has been found that performing a 

u-turn results in a longer travel time or delay than waiting to perform a left turn (12).  Related 

to roadway and intersection geometry, is overall transportation infrastructure design.  Right 

lanes often show lower saturation rates or vehicle counts than middle or left lanes on multiple 

lane roadways because less aggressive drivers use the right lane and because worse pavement 

conditions are often present (14).  Another roadway design factor that can impact traffic flow 

is location of bus stops.  Busses stopped on roadways cause traffic to deviate from the right 

lane to continue.  This has the potential to cause congestion.  The longer a bus waits at a stop 

and the closer the stop is to the intersection, the more likely congestion is to occur in and 

around the intersection, potentially impacting the network as a whole (16).   

Signal timing is another major factor that impacts traffic volume and travel time.  

Improperly timed signals have the potential to reduce roadway capacity and increase travel 

time.  Well timed signals have the potential to increase roadway traffic counts and reduce 

travel time.  Regarding turns, it should be noted that protected only phasing causes the 

highest delay to left turning traffic (4).  On poorly design left turns, this delay can cause 

vehicles waiting to turn to queue into the mainline vehicular traffic.  Situations like this are 

dangerous and can cause congestion and delays in the mainline traffic.  It is obvious that poor 

signal timing can cause delays at the intersection where the timing is being used, however, 

poor signal timing can cause delays in traffic upstream.  In fact, upstream delay induced by 
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downstream traffic can be caused by improper offset of signal green times (1).  Attempts 

have been made to increase the travel speed and reduce the travel time of transit travel 

options like busses.  In order to expedite bus travel, transit options have been given signal 

priority.  This means that they are allowed to maintain their travel, even if it causes an out of 

sequence signal cycle.  Giving transit vehicles signal priority can cause delay at the 

intersection and in the overall network, especially, as the number of transit vehicles increases 

(16).   

Given the number of different variables and factors that contribute to high and low 

level performance of transportation networks, it is difficult and/or time consuming for 

existing models to make accurate predictions of traffic flow volumes, travel time and 

congestion.  While it is known that commuters and the networks they use during their 

commute are relatively stable, developing a tool that utilizes social network analysis to 

examine the existing network and how to maximize its efficiency would be beneficial.  This 

social network analysis tool can be used to analyze existing infrastructure to ensure that it is 

used efficiently and benefits individual commuters as well as the society as a whole. 

Specifically, individual commuters would benefit through reduced travel time and more 

reliable travel time predictions on a variety of transportation networks.  Social network 

analysis of transportation networks could be used to identify critical locations for new or 

additional infrastructure expansion and construction.  In addition, this tool could create a 

sustainable solution by focusing infrastructure expenditures on precise locations, reducing 

capital expenditures and reducing the use of finite resources in unneeded construction.   

The scope of this project focuses on applying SNA to existing transportation 

networks and already completed transportation studies.  Specifically, two different 
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transportation networks are studied and analyzed using social network analysis tools.  This 

research uses traffic data from the case studies as the base data for entry and analysis within 

the social network analysis framework.  The results of applying social network analysis tools 

to transportation network study and analysis are presented.  Specifically, Bonacich Power, 2 

Step Reach, Eigenvector, and Betweeness Centrality are studied.  Using the data presented in 

the case studies, new transportation network models are developed.  These models consider 

the relationships and interactions of all intersections within the network.   

METHODOLOGY 

A total of 5 case studies were utilized for this report.  Studies from Jackson, MS and 

the Mississippi Gulf coast were utilized for this work.  One case study utilized information 

provided by the Shreveport, LA Public Works Department.  Two case studies provided by 

the Louisiana Department of Transportation and Development (LADOTD) were utilized in 

this research. One case-study focused on a suburban intersection in Baton Rouge, LA.  The 

second case-study focused on an urban street in New Orleans, LA. As such, this research 

focused on small world applications to simplify the social network analysis processes and 

calculations. Accordingly, the traffic network in a particular “neighborhood” area was 

studied instead of the entire city.  In retrieving and analyzing related data, intersections 

within the networks under investigation were considered nodes and traffic flow between 

nodes was considered as flow or relation.   

First Case Study 

The first case study was based on a continuous flow intersection (CFI) in Baton 

Rouge, LA.  CFI’s maintain “continuous” flow by allowing left turn and through traffic 

movements of perpendicular streets to occur at the same time.  CFI’s allow left turn traffic to 
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cross over on-coming traffic while perpendicular traffic of a cross street is allowed to 

proceed through.  Once left turn traffic has been given time to cross over to the left side of 

opposing traffic lanes, the signals are changed, allowing opposing traffic to proceed while 

also allowing left turns to take place unimpeded.  This is because left turn traffic has already 

moved to the left of on-coming traffic.  The data for this study is focused around the 

intersection of US 61 (Airline Highway) and LA 3246 (Siegen Lane). Data were obtained 

from a study that evaluated the change from a typical four leg signalized intersection where 

each approach consisted of two through lanes, two left turn lanes and a dedicated right turn 

lane to a continuous flow intersection (CFI) (13). Figure 1 details the location, intersections 

included and numbering system utilized in analyzing the first case study. This specific 

location was selected because of the abundance of traffic count data for intersections located 

within the “neighborhood” of this intersection.   

 

 Figure 1. Baton Rouge Transportation Network Map – CFI Study 

Based on traffic congestion information provided in the LADOTD report, the model 

development process involved identifying 35 nodes or intersections, which would have 
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traffic volumes studied. The associated traffic volumes between connected nodes were used 

to describe the strength of the connection.  The higher the traffic count is between two nodes, 

the stronger is the connection.  To evaluate the social makeup of the intersection network, 

traffic volume data were entered into a social network analysis program.  The software 

selected for this research is Unicet 6.   

Centrality was calculated using multiple functions within the Unicet 6 social network 

analysis software.  Essentially, each type of centrality quantitatively measures the power or 

importance of a chosen node.  Relative to transportation planning, a central intersection 

should be one that is given more focus to maintain consistent and non-extended travel time.  

Performance of central intersections drives the overall performance of the area roadway 

network.  For instance, if an intersection that is central to the network is improved, the 

overall travel time will improve.  However, if a non-central intersection is improved, the 

network will likely see little improvement in reducing travel time and travel time variability.  

To determine which intersections are most important for this research, four types of centrality 

were analyzed.  They are defined below: 

 Bonacich Power – a degree centrality measure that determines node centrality based 

on the degree centrality of adjacent nodes (6).  For this study, degree centrality is 

determined based on the total traffic volume that each node receives. 

 2 Step Reach – determines centrality by summing the number of other nodes within 2 

steps/links of a particular node (6). 

 Eigenvector – a closeness centrality measure that determines node centrality based on 

the closeness centrality of adjacent nodes (6).  Closeness centrality is calculated by 

determining how many connections are required to connect a selected node to all 
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other nodes.  In this study, closeness centrality is a function of how many 

intersections lie between any two selected intersections. 

 Betweeness – a value to determine how central/between other nodes within the 

studied network a particular node is.  Nodes with a value of zero are on the edge or 

periphery of the network (6). 

Centrality analysis for each of the aforementioned attributes was calculated 

individually and compiled in a spreadsheet comparison chart. Analysis was also performed 

using images.  Diagrams with node size scaled based on centrality, were analyzed to gain a 

better understanding of where the “power” nodes were located.  Strength of nodes and 

clusters can be easily determined using network images. These details are provided in the 

results and analysis section of this paper. 

It was not possible to obtain specific signal timing information and data for this area.  

As such, it was not included with the discussion of the results. 

Second Case Study 

The second case study involved the Tulane Avenue Feasibility project in New 

Orleans, LA (17). This project represents a pre-construction/change study, and though does 

not have before and after information, it involved abundant data about the local network for 

the intersection as well as associated businesses and stakeholders.  The related network map 

was plotted in a manner similar to case study 1. Similar analysis to the one described for the 

first case study was also conducted for the second case study.  Figure 2 diagrams the area and 

layout of the intersections utilized.  It was not possible to obtain specific signal timing 

information and data for this area.  As such, it was not included with the discussion of the 

results. 
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Figure 2. New Orleans Network Map & Layout for Second Case Study 

Third Case Study 

The third case study analyzed traffic data in Shreveport, LA.  The traffic engineering 

department of Shreveport, LA posts annual traffic counts in a report.  This report also lists 

the intersections with the highest traffic volume.  For the purposes of this research, the traffic 

counts for various roadways was used.  Intersections which were ranked in the Shreveport 

traffic report were labeled with their rank.  Intersections not ranked but used in this research 

were labeled with letters to differentiate between city ranked intersections and other 

intersections used for research purposes.  Figure 3 details the layout of the intersections and 

the area utilized for this study.  It was not possible to obtain specific signal timing 

information and data for this area.  As such, it was not included with the discussion of the 

results. 
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Figure 3. Shreveport Network Map & Layout for Third Case Study 

Fourth Case Study 

The fourth case study focused on “principal arterial” streets in Jackson, MS.  This 

classification and the associated traffic counts are provided on the Central Mississippi 

Planning and Development District website.  The principal arterial streets used in the 

research were located in the I-220, I-55, and I-20 triangle within the City of Jackson.  This 

was done to minimize the potential for distortion or shadow that an interstate roadway can 

cause when analyzing the centrality of roadway networks.  A total of 56 nodes were included 

in this study.  Figure 4 provides a map of the area within I-220, I-55, and I-20 that was 

utilized for this study. It was not possible to obtain specific signal timing information and 

data for this area.  As such, it was not included with the discussion of the results. 
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Figure 4. Jackson Network Map & Layout for Fourth Case Study 

Fifth Case Study 

The fifth case study analyzed traffic data in the Biloxi, Gulfport, and Pascagoula 

metropolitan area.  Of the case studies performed, this area included the most rural roadways.  

It was also adjacent to a popular beach and port area with the full network extending inland 

to rural areas.  A total of 118 nodes located in these three cities and inland rural areas were 

included in this case study.  Figure 5 details the Gulfport, Biloxi, and Pascagoula areas that 

were utilized for this study.  It was not possible to obtain specific signal timing information 

and data for this area.  As such, it was not included with the discussion of the results. 
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Figure 5. Mississippi Gulf Coast Network Map & Layout for Fifth Case Study 

DISCUSSION OF RESULTS 

The analysis of the CFI in Baton Rouge was compiled in a spreadsheet and is detailed 

in Table 2.  Each node was ranked for each category of centrality studied.  Node 11 and node 

19 each ranked number one in two of the centrality measures.  Table 1 provides the details 

and rankings for each of these categories and nodes. As shown in Figure 1, Node 11 was the 

CFI intersection of US 61 (Airline Highway) and LA 3246 (Siegen Lane). Interestingly, the 

traffic volume reported in the case study increased after the completion of construction of the 

CFI. This result indicates that this intersection is central to the network studied, aligning with 

the general findings of the social network analyses. As such, this intersection is critical to the 

overall level of traffic congestion within its network. For instance, in a more restricted state, 

prior to constructing the CFI, the intersection was more congested with higher delay times 

and reduced traffic volume. As a result, the other intersections within the network had to 
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carry higher traffic volumes and likely higher congestion. Upon construction completion, the 

CFI carried a higher traffic volume with reduced congestion delay times. The congestion of 

this intersection was reduced while also improving the traffic volume it can handle. This 

change likely reduced the traffic volume at other intersections within the network, reducing 

the overall congestion delays within the network.  This ability makes node 11 central and 

very important to the congestion of the overall network.  

The betweeness centrality is shown in Figure 6 where the top 10 most central (i.e. 

important and powerful) nodes as determined by four different measures are detailed.  It is 

interesting to note that node 19 was highly ranked in two different measures - that based part 

of the centrality calculation on the centrality of each node connections - even though it was 

on the edge of the network.  In addition, node 11 is shown as the largest node in the network.  

It clearly shows that node 11 has the highest betweeness centrality in the network.  

Reviewing the network betweeness centrality diagram also shows that node 11 is not in the 

center of the network.  There are 15 nodes to the right of node 11 and 19 nodes to the left of 

node 11, yet using betweeness centrality (as well as two other measures) as the analytical 

factor, node 11 is the most central node in the network.  

Table 2. Centrality Values Summary and Rankings by Node for First Case 

Study 

 

 Bonacich Power 2 Step Reach Eigenvector Betweeness 

Rank Unicet Value Node Unicet Value Node Unicet Value Node Unicet Value Node 

1 1120.03 19 13.00 11 0.36 19 180.77 11 

2 1073.38 20 13.00 17 0.34 20 159.02 18 

3 1052.06 18 12.00 18 0.34 18 154.83 19 

4 987.69 17 11.00 20 0.32 17 139.07 24 

5 940.97 24 10.00 10 0.30 24 128.45 12 

6 733.68 8 10.00 12 0.23 8 101.87 6 

7 730.55 14 10.00 19 0.23 14 91.13 8 

8 727.24 11 10.00 22 0.23 11 91.00 7 

9 613.09 22 10.00 24 0.20 22 88.50 10 

10 592.55 21 9.00 2 0.19 21 87.40 17 
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Figure 6. Network Betweeness Centrality Diagram for First Case Study 

 

 Table 3 details the analysis and findings of the Tulane Avenue network case study.  

The four major intersections within this study are represented by nodes 1, 2, 3 and 23.  These 

nodes consistently appear in the top 10 most central intersections when the data was 

analyzed.  Though not all of the intersections within the Tulane Avenue study appeared in the 

top 10 under each centrality analysis category, all four intersections appeared in the top 10 at 

least twice, with three intersections appearing in the top 10 for three centrality measures.  

Betweeness centrality is shown in figure 7.   
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Table 3. Centrality Values Summary and Rankings by Node for Second Case 

Study 

 
  Bonacich Power 2 Step Reach Eigenvector Betweeness 

Rank Unicet Value Node Unicet Value Node Unicet Value Node Unicet Value Node 

1 1124.78 2 14.00 13 0.25 2 698.31 26 

2 1115.99 1 14.00 26 0.25 1 632.16 41 

3 1083.89 26 13.00 7 0.24 26 589.51 23 

4 1055.45 20 13.00 28 0.24 20 573.47 13 

5 1024.44 3 13.00 34 0.23 3 480.50 80 

6 1007.25 5 12.00 1 0.23 5 465.30 7 

7 995.41 21 12.00 2 0.22 21 455.46 42 

8 957.12 22 12.00 9 0.22 22 436.62 22 

9 902.01 23 12.00 10 0.20 23 434.86 20 

10 896.48 6 12.00 14 0.20 6 422.69 2 

 

 

Figure 7. Network Betweeness Centrality Diagram for Second Case Study 

It is interesting to note that the focus area of each of the previously discussed studies 

was ranked at the top or near the top of the centrality analysis.  The intersections used in the 

Tulane Avenue study are circled in red.  Regarding these studies, this indicates that centrality 

measures correlate with existing methods to determine critical intersections or corridors for 
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improvement.  The intersections covered in the Tulane Avenue study are also important 

when looking at O-D demand.  The roadway network in this area is adjacent to busy 

commercial areas and a hospital.  As such, there could be high volumes of traffic both day 

and night.  The Tulane Avenue study intersections also closely align with the nodes that the 

SNA study found central to the network.  As such, SNA, the Tulane Avenue study, and O-D 

demand analysis appear to closely align on this case study.  

Table 4 details the SNA findings for the third case study.  Node AX was clearly the 

highest ranking intersection in regards to centrality measures.  It is located near a major 

highway and adjacent to a commercial area, however, it was not one of the 50 busiest 

intersections determined by the City of Shreveport traffic engineering team.  After 

completion of the study, it was determined that few of the intersections with the highest 

traffic volume were ranked high in regards to centrality measures.  For Shreveport, the 

highest ranked intersections in regards to centrality measures were generally centrally located 

within the network that was input into Unicet.  Most of the intersections that had the highest 

traffic volumes/ranks in the Shreveport traffic engineering report are located on the periphery 

of the network, adjacent to large shopping centers and industrial areas.  Figure 8 graphically 

depicts the betweeness centrality measures.  Node 21 has the highest betweeness centrality 

measure as noted in table 4.  The superior size of node 21 in Figure 8 is much larger than the 

other nodes indicating it is a central intersection.  Regarding O-D demand, node AX does not 

appear to meet key O-D demand factors which would indicate it is a critical intersection.  It is 

not located near destinations attracting large numbers of people and does not receive the 

highest volume of traffic.   
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Table 4. Centrality Values Summary and Rankings by Node for 3rd Case Study 

 

Figure 8. Network Betweeness Centrality Diagram for Third Case Study  

The fourth case study conducted analyzed the centrality of “primary arterial” streets 

in downtown Jackson, MS.  The findings of the centrality analysis were generally what was 

expected.  It was found that the most central intersections were in downtown Jackson or in 

high traffic areas.  In some locations, downtown Jackson roadways had lower traffic volumes 

than some of the outlying streets.  This is likely because there are more streets available for 

users to travel on in the downtown area.  Streets towards the edge of the network were 

  Bonacich Power 2 Step Reach Eigenvector Betweeness 

Rank Unicet Value Node Unicet Value Node Unicet Value Node Unicet Value Node 

1 1400.97 CU 16.00 21 0.39 AX 1643.42 21 

2 1224.11 BV 13.00 AX 0.36 21 1313.04 AX 

3 1063.08 BU 13.00 BB 0.34 CU 1202.21 31 

4 1610.80 AX 13.00 CU 0.30 BV 1166.72 32 

5 1461.38 21 12.00 2 0.26 BU 1041.45 AS 

6 960.45 CN 12.00 48 0.24 CN 1013.67 AK 

7 868.82 AZ 12.00 AP 0.22 AZ 865.07 C 

8 846.11 BB 12.00 AS 0.21 BB 785.17 BB 

9 761.55 AV 12.00 AV 0.19 AK 780.54 AP 

10 773.30 AK 12.00 AZ 0.19 AV 760.48 B 
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frequently spaced farther than downtown streets but they often carried higher volumes of 

traffic.  This explains how both lower volume close proximity intersections and high volume 

distant intersections can be central to a network.  Table 5 below details the findings of the 

centrality analysis for the fourth case study.  Figure 9 details the betweeness centrality of this 

network.  The size of node 42 clearly indicates that it has the highest betweeness centrality of 

the network studied.  Interestingly, based on distance, this intersection is not located in a high 

O-D demand area because it is located outside of the downtown corridor and away from 

major highways and high traffic volumes.   

Table 5. Centrality Values Summary and Rankings by Node for 4th Case Study 

 

 

  Bonacich Power 2 Step Reach Eigenvector Betweeness 

Rank Unicet Value Node Unicet Value Node Unicet Value Node Unicet Value Node 

1 1057.34 25 14 42 0.28 25 408.33 42 

2 1037.14 19 12 36 0.27 19 353.68 21 

3 959.25 18 12 1 0.25 18 328.51 19 

4 886.42 30 11 3 0.23 26 323.57 41 

5 886.30 26 11 19 0.23 30 299.92 1 

6 873.19 16 11 21 0.23 16 298.49 31 

7 868.82 11 11 25 0.22 11 296.25 37 

8 800.76 17 11 37 0.21 17 282.82 36 

9 764.32 31 11 43 0.19 21 261.39 18 

10 751.18 21 10 41 0.19 29 252.71 33 
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Figure 9. Network Betweeness Centrality Diagram for 4th Case Study 

Study 5 focused on the coastal area of Mississippi.  Centrality analysis determined 

that all critical intersections are located on or near the coast.  Both Bonacich power and the 

eigenvector measure of centrality determined that nodes 23, 26, and 18 are the most critical 

intersections.  Interestingly, none of these intersections is located on Highway 90 which 

carries consistently high volumes of traffic and connects the entire network area.  The 

betweeness centrality measure determined that the top 3 intersections were located on 

Highway 90, directly adjacent to Gulf of Mexico.  The Pascagoula area experienced some of 

the highest traffic volumes but they were confined to limited areas were commercial traffic is 

likely to travel.  Table 6 provides a complete summary of the centrality analysis done for this 

study.  In figure 10, nodes 40, 53, 24, and 56 are clearly the largest, indicating that they have 

the highest betweeness centrality of the transportation network. 

Table 6. Centrality Values Summary and Rankings by Node for 5th Case Study 

  Bonacich Power 2 Step Reach Eigenvector Betweeness 

Rank Unicet Value Node Unicet Value Node Unicet Value Node Unicet Value Node 

1 1218.76 23 13 103 0.30 23 2822.20 40 

2 1050.09 26 12 26 0.25 26 2516.00 53 

3 1026.78 18 11 28 0.25 18 2332.55 24 

4 1015.79 24 11 15 0.25 24 2274.00 55 

5 987.27 17 11 24 0.24 17 2036.00 56 

6 905.52 29 11 60 0.22 29 2015.87 42 

7 874.11 20 11 65 0.21 20 1992.87 43 

8 856.17 12 11 99 0.21 12 1880.87 50 

9 741.79 28 10 18 0.18 15 1862.00 58 

10 740.73 103 10 17 0.18 103 1857.61 28 
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Figure 10. Network Betweeness Centrality Diagram for 5th Case Study 

If an intersection is determined to have high centrality values within a network, it is 

an indicator that improving traffic volume capacity through it will have a high impact on 

mitigating congestion in the network as a whole.  Interestingly, as indicated in the CFI study, 

traffic volume through an intersection may actually increase at a central intersection if its 

traffic volume capacity is improved, making the already central intersection, more central in 

its local network. 

In case study 5, performing a more full review of the most central intersections could 

be very beneficial to network travel.  This is because many of the central intersections are not 

experiencing high volumes of total traffic and could be expanded to help meet the overall 

network capacity needs. 

CONCLUSIONS 

Based on the results of this study, it is shown that using social network analysis is a 

viable traffic congestion management tool, worth further and more in depth study.  Proven 
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successful, using social network analysis will create a new perspective for evaluating traffic 

congestion and making related infrastructure network decisions. It will help decision makers 

determine critical intersections to focus research and decision making on. 

In the CFI study, the model helped determine the exact areas for infrastructure 

improvement.  It zeroed in on node 11 as one of the most critical and important intersection 

for congestion improvement.  In the Tulane Avenue study, the four intersections within the 

study area frequently earned high levels of centrality and power when analyzing the data.  

They ranked high in four different centrality measures.  Combined, this indicates that the 

Tulane Avenue area studied is important to maximizing the traffic performance within the 

downtown New Orleans area.  Improving this section of the network should be among the 

top priorities for improving the surface street transportation network in downtown New 

Orleans. 

Using this model, design, construction and funding resources can be focused on the 

most critical intersections, getting more out of existing transportation infrastructure networks 

and pinpointing areas requiring modified infrastructure.  This model may be able to help 

identify intersections that are not typically given a high priority when making infrastructure 

decisions.  Upon additional validation, this model could help transportation planners develop 

innovative solutions to infrastructure dilemmas.  Finite resources can be focused on the areas 

that need improvement and that which improvement will have the biggest positive impact on 

the entire network.  Sustainability will be increased through maximizing the traffic flow 

capacity of already in place infrastructure and by minimizing monetary and natural resource 

use to modify or add infrastructure. Given that budgets for many individuals and 

organizations are limited do to current economic conditions, minimizing the money required 
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to reduce traffic congestion is of utmost importance. Heightened awareness of environmental 

impacts of various aspects of life, including, traffic congestion and infrastructure 

modifications or additions, has also made maximizing the capabilities of existing 

infrastructure and minimizing the impacts of adding infrastructure critical.  This social 

network analysis model has the ability to improve the lives of all individuals currently 

affected by traffic congestion.  Based on this first study and analysis, this model can be used 

to reduce congestion, improving many congestion related individual and society based 

factors.  It has the potential to improve the lives of anyone who uses a transportation 

network. 

RECOMMENDATIONS 

Future work related this study should more fully address O-D distribution.  The 

inherent nature of O-D distribution could have a large impact on network dynamics.  It is 

hypothesized that areas with a high O-D distribution would also have a high centrality value.  

Future work should analyze networks in locations other than the southern United States.  

Population density, number of transportation options and the culture of the study area could 

change the results of the SNA analysis.  In depth signal timing review and analysis should 

also be performed during follow-up research.  Signal timing can impact traffic flow and route 

selection which influence total vehicular traffic volume.  As such, signal timing could 

influence the results of roadway network analysis utilizing social network analysis.  More 

complete traffic engineering data and research incorporation will provide better overall 

conclusions regarding the use of social network analysis to analyze traffic layout.  However, 

upon further study and refinement of this research, it could be evaluated for use in a variety 

of transportation planning decisions.
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ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ASCE   American Society of Civil Engineers 

CFI   Continuous Flow Intersection  

LA   Louisiana 

LADOTD  Louisiana Department of Transportation and Development 

NIH   National Institute of Health 

O-D   Origin-Destination 

SNA   Social Network Analysis 

VMT   Vehicle Miles Traveled 
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